If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7c^2-26c+15=0
a = 7; b = -26; c = +15;
Δ = b2-4ac
Δ = -262-4·7·15
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-16}{2*7}=\frac{10}{14} =5/7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+16}{2*7}=\frac{42}{14} =3 $
| 7.1=c+1 | | 7+7a=3(1+a)-4 | | 2x+9+3x+x=1 | | m+7=25;m= | | -7c-12=3c+8 | | 1/y+2=2/y+3-3/y^2+5y+6 | | -6y+40=8(y-9) | | c-5.5=-2.8 | | 7x+9+x+10=17 | | -10=2x+3x+5 | | X^2+y^2-12y=-20 | | 11y-20=90 | | -4x+2x=-5-x | | 3/6x-5x/10x3=4/x^2 | | X^2+y^2-12y=-12 | | -5-x=-2x | | 3(x+7)=6)x+2) | | -1/3r=-1/4 | | 1/4f=11/3 | | 6/14=7/b-3 | | 4/3*x=84 | | 1/4f=32/3 | | 8n+64=15n+-6 | | 4/3x=84 | | 3-b/4=1/9 | | 1540=-30x | | (3x+2)=17 | | 4a-3(a-2)=2(3a-4) | | 5(x+-6)+2=7(x+2)+-10 | | 5v^2-18v+12=0 | | 470=30x+20 | | 3(x+5)=10-2x+5+4+2x+11 |